連立一次方程式は どこまで速く解けるのか?

Commodity PC clusterと 並列多倍長数値計算

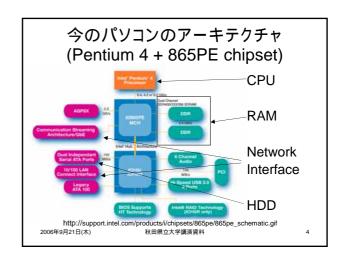
静岡理工科大学 幸谷智紀 http://na-inet.jp/

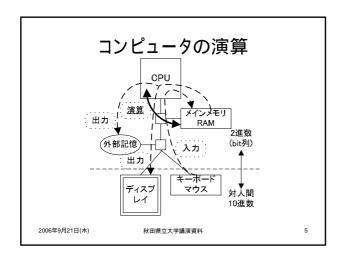
2006年9月21日(木)

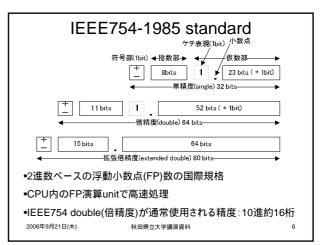
秋田県立大学講演資料

概要 多倍長数値計算とは? Commodity PC clusterとは? MPIとは? BNCpackとは? Conjugate-Gradient(CG)法とは? CG法の最短計算時間は? まとめ

多倍長数値計算とは? 今回使用するPC (Cluster) x86_32 アーキテクチャ • Pentium4 ・・・ Intel Pentium IV 2.8cGHz (11 nodes, 11PEs, Vine Linux 3.2) • Xeon・・・ Intel Xeon 3.0GHz(名古屋大学三井研, 8 nodes, 16PEs, Redhat 8) • PentiumD ・・・ Intel Pentium D 820 (2.8GHz, 4 nodes, 8PEs, Fedora Core 5 x86_64) • Athlon64X2 ・・・ AMD Athlon64 X2 3800+ 2.0GHz (幸谷私物, Fedora Core 4 x86_64) x86_64 アーキテクチャ







IEEE754 double計算でも不十分

- ある大御所のお言葉「8倍精度で十分・・・ホントか?
- 悪条件問題
 - 連立一次方程式の条件数が10^15以上
 - 近接根を持つ代数方程式の数値計算
- 実用になるかどうかはともかく, 桁を任意に変動させてみないと, 問題やアル・ゴリズムの持つ性質は分からない!
 - Krylov部分空間法・・・連立一次方程式
 - Lanczos法…行列のreduction(固有値問題)

double以上の精度(仮数部の桁数)を持つFP数をソフトウェアで実装する=多倍長浮動小数点演算(多倍長計算)

2006年9月21日(木)

秋田県立大学議演資料

多倍長計算の実装

- 「多倍長計算」「multiple precision」でGoogleると山ほど出てくる(円周率 の計算など)
- 「作るのは簡単,速くすることが難しい」
- IEEE754 FP数を繋げて桁を長くする
 - ARPREC (C++/Fortran90) http://crd.lbl.gov/~dhbailey/mpdist/arprec.tar.gz
- 多倍長「自然数」演算を積み上げて多倍長FP演算を実装す
 - GNU MP(GMP) とそのファミリーhttp://www.swox.com/gmp/
 - MPFR/GMP・・・GMPの自然数(mpn_*)ライブラリを土台にした多倍 長FP数ライブラリ

2006年9月21日(木)

秋田県立大学講演資料

GMPの特徴

- 高速な自然数演算(mpn_*)を, CPUアーキテクチャごとに最適化して実現
- ANSI Cレベルでの実装 + CPUアーキテクチャごとの最適化 (アセンブラ)
- x86系CPUは, MMX/SSE/SSE2を利用して高速化
- 整数(mpz_*), 有理数(mpq_*), FP数(mpf_*)を実現

mpz mpq mpf

GMP mpn

Pentium3 Pentium4 ...

 GMPのFP数は実用的には機能が不足 MPFR

2006年9月21日(木)

秋田県立大学講演資料

MPFRの特徴

- http://www.mpfr.org/
- ベースの自然数演算はGMPを利用・・・MPFR/GMPと呼ぶべき

mpz mpg mpf

Pentium3 Pentium4

GMP mpn

10

12

- IEEE754 standardの上位互換
 - 4種類の丸めモード(GMPはRZのみ)
 - 無限大(±Inf), 非数(NaN)
 - 初等関数
- 特殊関数も実装
- 四則演算と初等関数では世界トップレベルの速さ http://www.medicis.polytechnique.fr/~pphd/mpfr/timings-220.html
- GMP Version 4までは同梱されていた 2004年1月以降は分離 (GMP側の偏狭さが原因?)

2006年9月21日(木)

秋田県立大学講演資料

MPFR/GMPの構造体 Precision _mpfr_prec in bits _mpfr_sign Sign x86 32 enviroment mpfr exp Exponent Pointer to Mantissa * mpfr d ≤ mantissa 0 1 2 3 32hits (4 Byte) 2006年9月21日(木) 秋田県立大学講演資料 11

自然数の乗法アルゴリズム

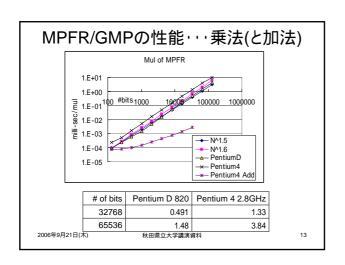
Bit数 N に応じて4つのアルゴリズムを実装

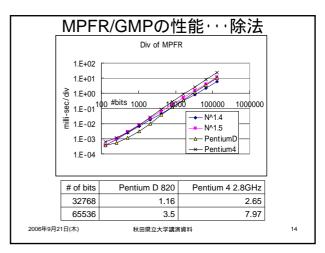
- 1. Basecase乗算(筆算と同じ)・・・O(N^2)
- 2. Karatsuba乗算··· O(N^1.585)
- 3. Toom-Cook 3way乗算··· O(N^1.465)
- 4. FFT乗算(Option)··· O(N^1.333~1.4)

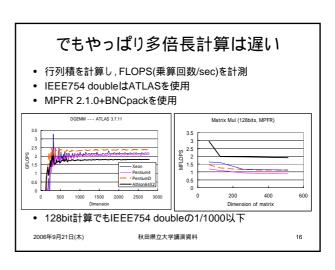
FFTが利いて〈るのは少な〈ても約10000bits以上 (by GMP マニュアルより)

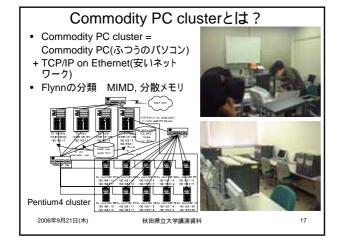
2006年9月21日(木)

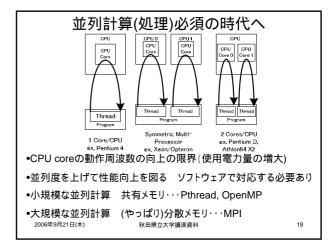
秋田県立大学講演資料

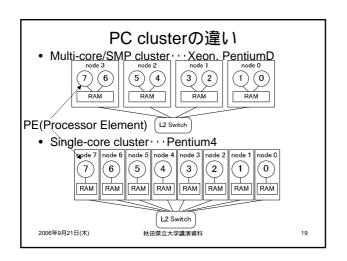


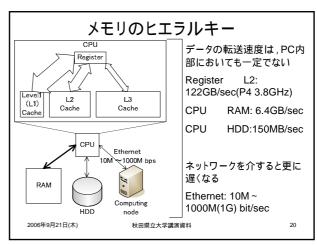


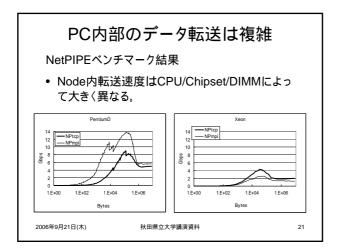


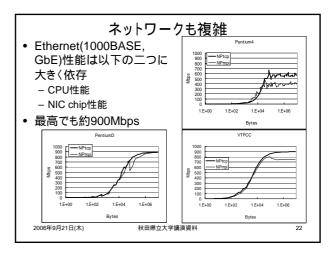


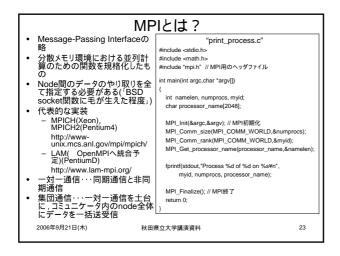


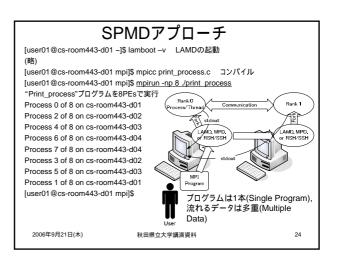


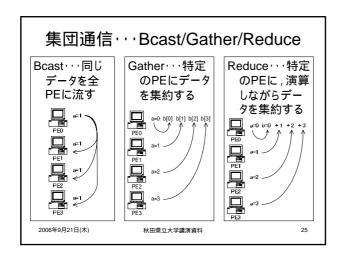


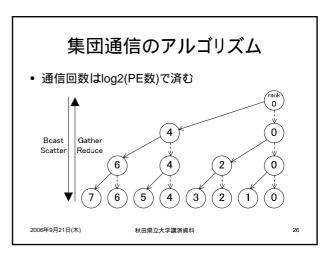


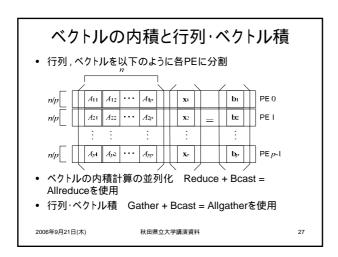


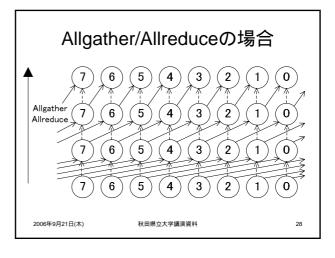


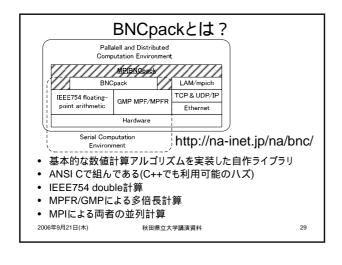


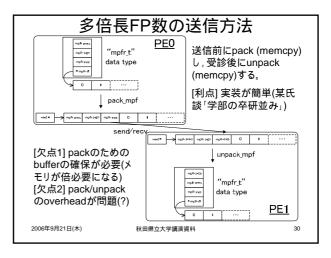












Conjugate-Gradient(CG)法とは?

- 連立一次方程式のアルゴリズム
 - 直接法(Linpack, Top500)···LU分解·Gaussの
 - 反復法···Jacobi反復, Gauss-Seidel, SOR法
 - Krylov部分空間法···CG, BiCG, CGS···法
- 正定値対称行列に適用可能
- Krylov部分空間内で解を構成する。

2006年9月21日(木)

秋田県立大学講演資料

CG法のアルゴリズム 連立一次方程式

 $A\mathbf{x} = \mathbf{b}$ $\Box \Box \Box \Box$, $A^T = A \in \mathbb{R}^{n \times n}$, $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$.

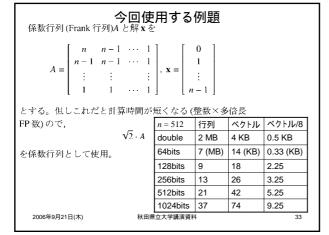
- 1. 初期値 x₀ ∈ ℝ" を決める。
- 2. $\mathbf{r}_0 := \mathbf{b} A\mathbf{x}_0$, $\mathbf{p}_0 := \mathbf{r}_0$ とする。
- 3. $k = 0, 1, 2, \cdots$ に対して以下を計算する。
 - (a) $\alpha_k := (\mathbf{r}_k, \mathbf{p}_k)/(\mathbf{p}_k, A\mathbf{p}_k)$
 - (b) $\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{p}_k$
 - (c) $\mathbf{r}_{k+1} := \mathbf{r}_k \alpha_k A \mathbf{p}_k(\mathbf{X}) := \mathbf{b} A \mathbf{x}_{k+1}$
 - (d) $\beta_k := ||\mathbf{r}_{k+1}||_2^2/||\mathbf{r}_k||_2^2$
 - (e) $||\mathbf{r}_k||_2/||\mathbf{r}_0||_2 < \varepsilon_r = 10^{-20}$ の時,停止。
 - (f) $\mathbf{p}_{k+1} := \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k$

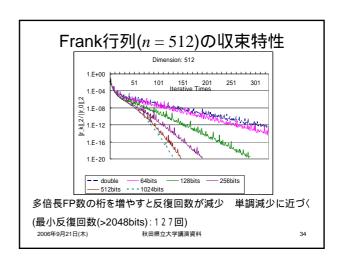
2006年9月21日(木)

• ベクトル単位の計 算のみでアルゴリ ズムが構成されて いる 並列化が容

pk が互いに直交す る 理論的には有 限回(<=n)の反復で 終了する筈が・・・

秋田県立大学講演資料





CG法の最短計算時間は? 多倍長FP数の桁の増加 Computational 1演算の計算時間の増加 CG法の反復回数は減少 decrease in comp.time per 1 PE 並列化による計算時間減少は? comm. time on cluste minimu • PE数の増加 1 PEあたりの計算時間の減少 (PE数=次元数が最小) 通信時間の増加 計算時間 < 通信時間 となれば,並列計算の効果は頭打ち 2006年9月21日(木) 秋田県立大学講演資料

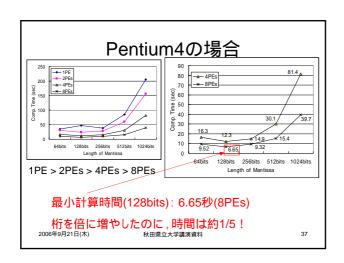
逐次計算の場合

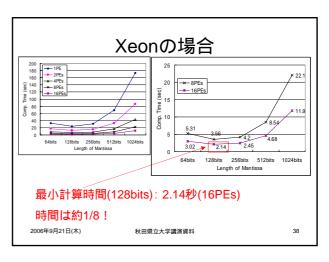
• 1PEで計算した時の反復回数と,計算時間(sec)

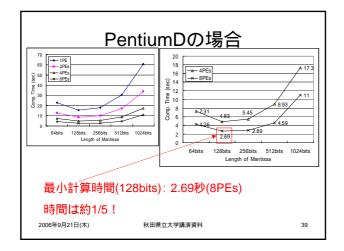
#bits	#Iteration	Pentium4	Xeon	PentiumD
64	506 ~ 513	34.4	16.9	22.9
128	286 ~ 294	47.3	24.2	15.6
256	191	38.4	31.2	17.9
512	147	85.3	69.3	30.4
1024	131	205	173	60.6

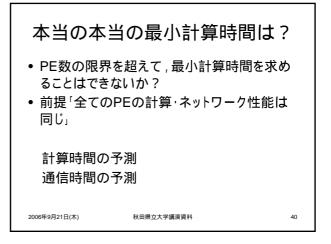
並列化でどこまで時間短縮が図れるのか?

2006年9月21日(木) 秋田県立大学講演資料 36





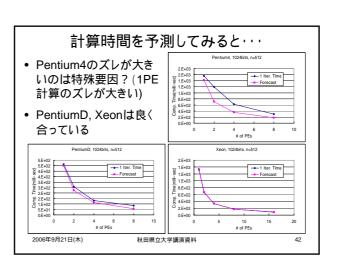




計算時間の予測は可能か?

- 多倍長FP演算アルゴリズムから,計算時間のorderは分かるが,実測値との絶対的なズレは大きくなる
- 多倍長乗法・除法・加法,1回あたりの計算 時間を予め計測しておく
- 計算回数×1回あたりの多倍長演算時間で 計算時間を予測

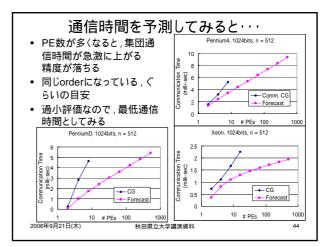
2006年9月21日(木) 秋田県立大学講演資料 41

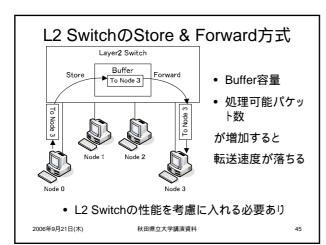


通信時間の予測は可能か?

- 集団通信における一斉通信は、「各nodeから送られるデータを1回送信」と考える 通信回数=log2(PE数)
- 1PE/nodeの場合
 - NPmpiの結果を補間してThroughput(send_receive_time, Mbps)を求める
 - 通信回数×send_receive_time で予測
- 2PE/nodeの場合
 - 基本的には上記と同じ
 - Node内通信とNode間通信とで別々に算出して和を取る

2006年9月21日(木) 秋田県立大学講演資料





CG法の最小計算時間は? (たぶん相当過小評価)

#bits	Min #Iter.	Pentium4	PentiumD	Xeon
64	506	6.44(milli-sec, 32PEs) × 506 =3.26(sec)	3.48(32PEs) × 506 =1.76	1.18(256PEs) × 506 =0.60
128	286	7.2(64PEs) × 286 =2.06	3.75(64PEs) × 286 =1.07	1.31(512PEs) × 286 =0.37
256	191	8.27(128PEs) × 191 =1.58	4.4(128PEs) × 191 =0.84	1.64(512PEs) × 191 =0.31
512	147	9.97(256PEs) × 147 =1.47	5.29(256PEs) × 147 =0.78	2.5(512PEs) × 147 =0.37
1024	131	12.2(512PEs) x 131 =1.60	6.29(512PEs) × 131 =0.82	4.59(512PEs) x 131 =0.60

殆ど全部,通信時間になってしまっている(実用的には意味のないレベル) 2006年9月21日(木) 秋田県立大学議演練料 46

PentiumDがXeonに 実測値でも予測値でも負けている理由 ・ 転送データ量が小さい所で速度が遅い(実際遅い) ・ Fedora Core 5のKernelはTuningが甘いらしい 「小さいこと(データ)から、コツコツと!」 2006年9月21日(木) 秋田県立大学購演資料 47

まとめ

- CG法のような, 多倍長計算が有効なアルゴリズムはまだ研究する余地がある
- 実用的な多倍長計算のためには
 - 128bits~16384bitsの精度で高速な演算
 - 100~10000 Bytesのデータサイズで高い Throughput

が重要

- 集団通信時間の予測は難しい(実測値を使うのが確実)
- の世界記録」と「8倍精度」の間にある「実用的な多倍長計算」が必要な問題やアルゴリズムは存在する!

2006年9月21日(木) 秋田県立大学講演資料 48