
Performance Evaluation of Multiple and

Mixed Precision Iterative Refinement

Method and its Application to

High-Order Implicit Runge-Kutta

Method

Tomonori Kouya
Shizuoka Institute of Science and Technology, Shizuoka 437-8555, Japan

tkouya@cs.sist.ac.jp

Abstract

Buttari et al. have proposed mixed precision iterative refinement
method using the IEEE754 single and double precision arithmetic for
solving linear systems of equations. We broaden the scope of the ap-
plications of the mixed precision iterative refinement method by using a
combination of double precision arithmetic and multiple precision arith-
metic and show that the new method has higher performance and yields
the same level precise solutions as the original method. Finally, through
our numerical experiments, we demonstrate that the fully implicit Runge-
Kutta methods with the mixed precision iterative refinement can speedup.
Keywords: linear system, iterative refinement, multiple precision floating-
point arithmetic, implicit Runge-Kutta method

1 Introduction

Nowadays, it is necessary for large-scale scientific computations to guarantee
the user-required accuracy of their numerical results. In large-scale computa-
tion, the chances of ill conditions occurring are high. Hence, round-off errors
may accumulate in their numerical processes, which use standard IEEE single
precision (SP) or double precision (DP) arithmetic, and hence, their accuracy
is affected. In order to prevent such a situation, we sometimes need to use mul-
tiple precision (MP) floating-point arithmetic such as quadruple, octuple, and
hextuple precision in large-scale scientific computation.

The MP floating-point arithmetic in use generally is implemented as a soft-
ware library, and hence, it is much slower than SP, DP, or integer arithmetic
directly running on hardware units in CPUs. Therefore, it is desirable for users
to select the least digits of MP floating-point arithmetic that can guarantee
them the numerical accuracy they require.

The SP-DP type mixed precision iterative refinement method [2] proposed
by Buttari et al. in 2007, is an economical and stable method to guarantee
an accurate solution of linear equations when its illness is not so large in SP

1

floating-point arithmetic. In this method, the numerical residual is obtained in
high-cost DP floating-point arithmetic, and then, a more complex direct method
with the DP residual as a constant vector is executed in low-cost SP floating-
point arithmetic. Through these processes, we can save computational time and
can obtain a numerical result that is as accurate as the result obtained we use
simply DP direct method. This idea can be easily expanded to MP floating-point
computation. As a result, the MP scientific computation including solvers of
linear equations by using the mixed precision iterative refinement method can be
economized because running cost of the software MP floating-point arithmetic
mostly depends on its digits. This method is particularly desirable for the
inner process in high order implicit Runge-Kutta (IRK) method. The linear
equations appearing in the IRK method are relatively well-conditioned, so we
hope to minimize the computational costs of the solving processes by using a
mixed-precision iterative refinement method.

In this paper, we first explain the mixed precision iterative refinement method
proposed by Butttari et al. and confirm that it can be applied in a multiple preci-
sion environment. Second, we will experiment MP-MP (multiple precisions) and
DP-MP type iterative refinement methods applied to well- and ill-conditioned
problems in a standard PC environment with a multi-core CPU and demon-
strate that our proposed DP-MP type iterative refinement method can obtain
the maximum speedup ratio. In addition, we show the limitations in speedup by
parallelizing these iterative refinement methods in a multi-core CPU. Finally, we
benchmark the fully implicit Runge-Kutta methods with the DP-MP iterative
refinement method that performed the best to show its advantage.

2 Theory and Algorithm of Mixed Precision It-
erative Refinement Method

In 1967, C. Moler proposed the original iterative refinement method for solving
linear systems of equations. His idea was based on the Newton method for
application to a n-th dimensional equation.

We suppose that the targeted linear system of equations is

Ax = b

A ∈ Rn×n, x ∈ Rn, b ∈ Rn,
(1)

where the coefficient matrix A is always normal. In this paper, any elements of
A and b in (1) are given in any expected precision.

In this case, the algorithm of the iterative refinement method for solving the
linear systems of equations (1) is as follows:

rk := b−Axk (2)

Solve Azk = rk for zk (3)

xk+1 := xk + zk (4)

Buttari et. al proved that the mixed precision iterative refinement method
can obtain an approximation with the same level of relative errors as obtained
by using standard methods for solving linear systems of equations, which purely
uses L decimal digits floating-point arithmetic. Moreover, their proposed mixed

2

precision iterative refinement method can gain better performance if (3) is cal-
culated with S(< L) decimal digits. They also maintain that the algorithm em-
ployed in (3) must be numerically stable, concretely like the GMRES method or
direct method. We employ the direct method by LU factorization with partial
pivoting as a solver for (3). In this case, (3) is expressed as

(PLU)zk = rk.

Before the iterations, A must be factorized as PLU , where P is a permutation
matrix obtained by partial pivoting. The forward and backward substitutions
are only executed during the iteration process. The algorithm corresponding to
the formulas (2) - (4) is as follows:

1. A[L] := A, A[S] := A[L], b[L] := b, b[S] := b[L]

2. A[S] := P [S]L[S]U [S]

3. Solve (P [S]L[S]U [S])x
[S]
0 = b[S] for x

[S]
0

4. x
[L]
0 := x

[S]
0

5. For k = 0, 1, 2, ...

(a) r
[L]
k := b[L] −Ax

[L]
k

(b) r
[S]
k := r

[L]
k

(c) Solve (P [S]L[S]U [S])z
[S]
k = r

[S]
k for z

[S]
k

(d) z
[L]
k := z

[S]
k

(e) x
[L]
k+1 := x

[L]
k + z

[L]
k

(f) Exit if ∥r[L]
k ∥2 ≤

√
n εR ∥A∥F ∥x[L]

k ∥2 + εA,

where A[S] or b[L] denotes the approximated matrix or vector, respectively,
rounded to S or L decimal digits floating-point numbers.

Below, we will describe the conditions for the convergence of the S- L decimal
digits mixed precision iterative refinement method.

The symbols εS and εL denote the machine epsilons in S and L decimal
digits floating-point arithmetic, respectively. In L digits arithmetic, (2) can be
expressed as

rk = b−Axk + ek,

where ∥ek∥ ≤ φ1(n)εL (∥A∥ · ∥xk∥+ ∥b∥) .
(5)

The residual rk includes the computational error ek[5]. Similarly, we can express
(4) as

xk = xk + zk + fk,

where ∥fk∥ ≤ φ2(n)εL (∥xk∥+ ∥zk∥) .
(6)

Moreover, (3) can also be expressed as

(A+Hk)zk = rk,

where ∥Hk∥ ≤ ϕ(n)εS∥A∥.
(7)

3

At this time, we define αF and βF∈ R as follows:

αF =
ϕ(n)κ(A)εS

1− ϕ(n)κ(A)εS
+ 2φ1(n)κ(A)εL + φ2(n)εL

+ 2(φ1(n)εL)φ2(n)κ(A)εL

= ψF (n)κ(A)εS (8)

βF = 4φ1(n)κ(A)εL + φ2(n)εL + 4(1 + φ1(n)εL)φ2(n)κ(A)εL

= ρF (n)κ(A)εL (9)

If the conditions
ρF (n)κ(A)εS

1− ψF (n)κ(A)εS
< 1 and αF < 1 (10)

are satisfied, we can expect that

lim
k→∞

∥x− xk∥ ≤ βF
1− αF

∥x∥. (11)

This implies that the normwise relative error in the approximation xk can reduce
the order of βF /(1− αF) [2].

For the above mentioned conditions, the S-L digits mixed precision iterative
refinement can converge if

κ(A)εS << 1 (12)

must be satisfied. From the above condition, for the convergence of the S-L
decimal digits mixed precision iterative refinement method, it is necessary that
S is a large computational digit if κ(A) is large. In this case, it requires more
computational cost, and consequently its effectiveness would decrease. On the
other hand, the question why we require L(> S) digits approximation would
arise when κ(A) is small.

Therefore, the cases when the S-L decimal digits mixed precision iterative
refinement method will be advantageous are as follows:

• to require over L digits approximation if ε−1
S > κ(A)

• to be in computational environment that S digits arithmetic can be exe-
cuted much faster than L digits arithmetic

and vice versa. Figure 1 explains such conditions.

3 Strategy for Selecting Precision used in Iter-
ative Refinement Method

The computational costs of multiple precision floating-point arithmetic are more
than that of the quadruple precision implemented arithmetic because the soft-
ware libraries generally require much more computational cost than IEEE754
single or double precision floating-point arithmetic embedded as hardware units
on CPUs. For this reason, the mixed precision iterative refinement method
which uses S decimal digits and L decimal digits floating-point arithmetic, can
achieve a better performance than the direct methods, which purely uses L dec-
imal digits floating-point arithmetic, if users require U decimal digits approxi-
mation more than the quadruple precision, and U is much less than log10 κ(A),

4

LU Decomposition

Computational Time

Forward &
Backward
Substitions

LU

Matrix-Vector
Multiplication

F&B
Subst

L digits
Direct

Method

S digits
Direct

Method

S-L Iterative
Refinement

LU
F&B
Subst

Matrix-Vector
Multiplication

F&B
Subst

Iteration

Figure 1: Structure of computational time of mixed precision iterative refine-
ment

where L > U + log10 κ(A) and S > log10 κ(A). The mixed precision iterative
refinement method also has approximations at the same level of relative errors
as in direct methods. Hence, we select 3 combinations of precision (SP-DP, DP-
MP and MP-MP) to be applied in mixed precision iterative refinements, which
can optimize the level of relative errors and computational costs.

1. κ(A) < 107 =⇒ Single Precision(S = 7)-Double Precision(L = 15): SP-
DP type

2. κ(A) < 1015 =⇒ Double Precision(S = 15)-Quadruple Precision or Mul-
tiple Precision(L > 30): DP-MP type

3. κ(A) > 1015 =⇒ Quadruple Precision or Multiple Precision - Multiple
Precision : MP-MP type

The combination of DP-MP and MP-MP iterative refinement methods in
above combinations can achieve a better performance than the original SP-DP
iterative refinement method proposed by Buttari et al. We can expect the
DP-MP iterative refinement method to achieve the best performance among
them because it uses high-speed hardware computation (DP) and slow software
computation (MP).

However, the actual performances of these mixed precision iterative refine-
ments depend on the computation environments on which they are executed.
As shown in Figure 1, the S-L decimal digits iterative refinement method would
be meaningless if the S decimal digits computation could not be executed faster
than the L decimal digits one. For this reason, we set S and L as L/S ≥ 2 in
our numerical experiments described in this paper. Minimize L/S ratio to an
extent where better performance is achieved with the mixed precision iterative
refinement is the objective of future works.

4 Performance Evaluation

In this section, we evaluate the performances of the MP-MP and DP-MP iter-
ative refinement methods in the following environment:

CPU AMD Phenom II X6 1065T (6 cores)

5

RAM 16 GB

OS Scientific Linux 6 x86 64

C compiler gcc 4.4.5

Libraries BNCpack[6] 0.7 with MPFR 3.1.0[7]/GMP 5.0.2[1] and Pthread

LAPACK LAPACK 3.4.0 and ATLAS[8] 3.8.3

The DP computations are executed by using BNCpack without using the ad-
vantages of the CPU architectures, original LAPACK (compiled with gfortran),
and its tuned ATLAS.

The MP computations are executed by using BNCpack based on MPFR/GMP.
Multiple precision floating-point variables provided by MPFR and GMP are
able to have any length of bits of mantissas, so mixed precision computations
are freely executed in any positions of codes.

We set the convergence check such as

εR := εL, εA := 0, (13)

to obtain the best approximation so long as we use less than L decimal digits
in the computation, where εL is the machine epsilon in the L decimal digits
computation.

4.1 Performance Evaluation of MP-MP Iterative Refine-
ment Method

We evaluate the performance of the MP-MP iterative refinement method by
using the Lotkin matrix (14) as an example of ill- conditioned problems.

A =

1 1 · · · 1
1/2 1/3 · · · 1/(n+ 1)
...

...
...

1/n 1/(n+ 1) · · · 1/(2n− 1)

 (14)

We employ a true solution as x = [1 2 ... n]T and create test problems with
correctly rounded L decimal digits A and b = Ax.

Various dimensions n = 128, 256, 512 and 1024 used in our numerical experi-
ment, the corresponding condition number κ∞(A)(= ∥A∥∞∥A∥∞) of the Lotkin
matrices, and the S and L decimal digits for which we select the precision for
the MP floating- point arithmetic are shown in Table 1.

Table 1: Condition number of Lotkin matrix A and sets of selected decimal
digits

Dimension 128 256 512 1024
log10(κ∞(A)) 195 391 784 1576
S (decimal) 250 500 1000 1750
L (decimal) 500 1000 2000 3500

6

Table 2: Computational time(s) and significant decimal digits of direct
method(L and S), MP-MP mixed precision iterative refinement method (it-
erative times in parenthesis)

(n,L) (128, 500) (256, 1000) (512, 2000) (1024, 3500)
s digits s digits s digits s digits

∗ 0.2 67 6.7 362 79 222 1449 187
∗∗ 0.3(6) 308 8(4) 1112 91(6) 1219 1637(11) 1936
∗ ∗ ∗ 0.5 309 17 1114 259 1220 3988 1936
∗ ... Direct Method (S)
∗∗ ... Iterative Refinement Method (S − L)
∗ ∗ ∗ ... Direct Method (L)

As mentioned previously, the condition S >> κ(A) must be satisfied if
the mixed precision iterations have to be converge properly. These selected
precisions afford to converge our numerical examples.

We present the results of the performance evaluation in Table 2.
As we had previously shown the significant decimal digits of the numerical

solution are of the same order as that obtained using the L digits direct method,
and the computational time added the cost of the residual computation to the
cost of the S digits direct method.

In order to speed up the MP-MP type iterative refinement method, we par-
allelize it by using a parallelized direct method and a parallelized residual com-
putation with Pthread on a multi-core CPU. The efficiency of the parallelized
MP-MP iterative refinement methods is shown in Figure 2.

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Speedup Ratio

(vs. 1 thread)

Threads

Performance of Parallelized Iterative Refinement

Ideal

n = 128,

dprec=500

n = 256,

dprec=1500

n = 512,

dprec=2000

n = 1024,

dprec=3500

Figure 2: Performance of parallelized MP-MP iterative refinement method

In cases of n = 128 and 500 decimal digits, our parallelization is not com-
pletely efficient. If anything, the parallelization limits the efficiency. We can
recognize that large-scale problems are more efficient, i.e. the DP-MP type itera-
tive refinement method is not completely efficient because of such parallelization
limits.

7

4.2 Performance Evaluation of DP-MP Iterative Refine-
ment Method

Here we evaluate the DP-MP iterative refinement method by using well-conditioned
linear system of equations (15).

We create the dense square matrix with a fixed condition number by multi-
plying the normal matrix X generated by using a standard random generator,
its inverse matrix X−1, and the diagonal matrix D = diag(n, n − 1, ..., 1) such
as

A = XDX−1. (15)

Thus, we can obtain the well-conditioned matrix A with κ2(A) = n. We employ
a true solution as x = [1 2 ... n]T and create test problems with correctly
rounded L decimal digits A and b = Ax.

In the process of the DP-MP type iterative refinement method, the LU
factorization outside iterations and forward and backward substitutions inside
them are executed in DP arithmetic. On the other hand, the residuals and
renewal of approximations inside them are done in MP arithmetic. A combi-
nation of these arithmetic can cause a limitation in accuracy for approximation
owing to occurring underflow in DP arithmetic. If the length of the exponent
in the MP floating-point number is longer than the DP floating-point number,
the renewal of approximation cannot be invalid when the norm of the residual
is under about 1.0× 10−308. For this reason, we limit the computational digits
to L = 50, 100, and 200 and the dimension of test problems to n = 128 to 1024.
The results are described as below.

Table 3 shows the relative errors and iterative times of the DP-MP itera-
tive refinement method. For comparison, the results of the MP-MP iterative
refinements are shown in this table as well.

Table 3: log10(Relative Error) and iterative times (in parenthesis) of DP-MP
iterative refinement

L = 50

n MP-MP BNCpack LAPACK ATLAS

128 -47.63 (2) -49.10 (4) -49.02 (4) -49.23 (4)

256 -46.71 (2) -48.84 (4) -48.80 (4) -48.74 (4)

512 -47.24 (2) -48.09 (4) -48.41 (4) -48.76 (4)

1024 -46.96 (2) -48.75 (4) -48.61 (4) -48.32 (4)

n L = 100

128 -97.38 (2) -98.94 (7) -98.69 (7) -98.93 (7)

256 -96.93 (2) -99.04 (7) -98.96 (7) -99.04 (7)

512 -96.18 (2) -98.00 (7) -98.43 (7) -98.62 (7)

1024 -95.56 (2) -98.66 (7) -98.71 (7) -98.60 (7)

n L = 200

128 -197.39 (2) -198.50 (14) -198.59 (14) -196.97 (13)

256 -196.38 (2) -198.65 (14) -198.68 (14) -198.71 (14)

512 -196.13 (2) -198.20 (14) -198.04 (14) -198.42 (14)

1024 -196.11 (2) -198.46 (14) -198.52 (14) -198.56 (14)

There is only a slight difference in the relative errors of approximation of the

8

DP-MP iterative refinement method and the MP-MP type one. In many cases,
the DP-MP type can obtain a slightly more precise error of approximation than
MP-MP type. When the ratio L/S is larger, the speed of convergence of the
iterative refinement method is slower. For this reason, the DP-MP type requires
more than 2 to 7 times iterations than the MP-MP type. Figure 3 shows the
speedup ratio of the DP-MP type versus that of the MP-MP type.

0

5

10

15

20

25

30

35

BNCpack LAPACK ATLAS BNCpack LAPACK ATLAS BNCpack LAPACK ATLAS

L=50 L=100 L=200

Speedup Ratio(MP-

MP/DP-MP)

Speedup Ratio: Iter.Ref(MP-MP vs. DP-MP)

n=128

n=256

n=512

n=1024

Figure 3: Speedup ratio: MP-MP / DP-MP

In all, we can recognize that more computational digits tend to reduce the
speedup ratio. This is because the MP computations of residuals in cases of
more iterations reduce the speedup gained by LU factorization, as shown in
Figure 3. Despite these drawbacks, the actual DP-MP iterative refinement can
perform 33 (in 50 decimal digits) to 10 (in 200 decimal digits) times better with
ATLAS and 1.8 to 3.1 times better with BNCpack.

5 Application to Fully Implicit Runge-Kutta Meth-
ods with DP-MP Iterative Refinement

As mentioned above, the DP-MP type mixed precision iterative refinement can
perform better in relatively well-conditioned linear systems of equations from
which the DP direct method can obtain precise solutions. This advantage will
be maximized for fully implicit Runge-Kutta (IRK) methods.

For the initial value problem for the n-th dimensional ordinary differential
equation (ODE) {

dy
dx = f(x,y)

y(x0) = y0
, (16)

we discretize it over the integration interval [x0, α] with constant stepsize h =
(α− x0)/(2 · 4l). When we obtain a new approximation yi+1 ≈ y(x0 + ih) from
the former one yi, we must solve the nonlinear system of equations

k1 = f(xi + c1h,yi + h
∑m

j=1 a1jkj)

k2 = f(xi + c2h,yi + h
∑m

j=1 a2jkj)
...

km = f(xi + cmh,yi + h
∑m

j=1 amjkj)

,

9

and then, we calculate yi+1 as follows:

yi+1 := yi + h
m∑
j=1

wjkj ,

where m denotes the number of stages in the IRK method, and cp, apq, and
wq are constants chosen in the IRK method. In our numerical experiments, we
select m stages 2m-th order (m = 3, 4, ..., 10) Gauss type formula[4].

To solve the nonlinear system of equations above, Newton’s iteration is often
applied as follows:

k
(l+1)
1

k
(l+1)
2
...

k
(l+1)
m

 :=

k
(l)
1

k
(l)
2
...

k
(l)
m

−J−1(k
(l)
1 , ...,k(l)

m)

k
(l)
1 − f(xi + c1h,yi + h

∑m
j=1 a1jk

(l)
j)

k
(l)
2 − f(xi + c2h,yi + h

∑m
j=1 a2jk

(l)
j)

...

k
(l)
m − f(xi + cmh,yi + h

∑m
j=1 amjk

(l)
j)

 ,

where J(k
(l)
1 ,k

(l)
2 , ...,k

(l)
m) denotes

J(k
(l
1 ,k

(l)
2 , ...,k(l)

m) =

In − J11 −J12 · · · −J1m
−J21 In − J22 · · · −J2m
...

...
...

−Jm1 −Jm2 · · · In − Jmm

 . (17)

In the above formulas, In denotes the n-th dimensional identity matrix and Jpq
denotes

Jpq = hapq
∂

∂y
f(xi + cph,yi + h

m∑
j=1

apjk
(l)
j) ∈ Rn×n,

where ∂f/∂y is the Jacobian matrix of f .
We can expect that the linear system of equations emerged from Newton’s

iteration have the property that J(k
(l
1 ,k

(l)
2 , ...,k

(l)
m) → Imn when h→ 0. Because

of this property, the DP-MP iterative refinement may be applicable to them for
the IRK method with small h because they would be well-conditioned in many
cases. In such situations, the DP-MP iterative refinement may speed up the
IRK method for obtaining MP approximation.

To confirm the hypothesis, we prepare the constant linear ODE

f(x,y) = −Ay, y(0) = [1 ... 1]T , α = 20

with the well-conditioned 128th dimensional matrix A(∥A∥1 ≈ 103) based on
(15), and then apply the 3 stages 6th order Gauss type L = 50 decimal digits
IRK method to it. Figure 4 shows the history of the relative errors in the
approximations versus stepsize h, and the histories of the condition numbers

and Frobenius norms of J(k
(l)
1 ,k

(l)
2 , ...,k

(l)
m).

For h−1 = 512, we can recognize that about 24 decimal digits approximations
are obtained and that the condition numbers decrease in 3.8×103 to 1.7. These
facts verify the applicability of the DP-MP iterative refinements to the linear
ODE. We show the speedup ratio of the IRK method with the DP-MP iterative
refinement versus that with MP-MP iterative refinement in Figure 5.

10

1

10

100

1000

10000

2 8 32 128 512

h^(-1)

||J||_F

cond_1(J)

Figure 4: Frobenius norms and condition numbers of J in case of m = 3

0

5

10

15

20

25

30

m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

Speedup Ratio

MP-MP/DP-MP

Number of IRK Stages

Speedup Ratio: MP-MP vs. DP(ATLAS)-MP(L=50)

Figure 5: Speedup ratio of implicit Runge-Kutta method (50 Decimal Precision):
MP-MP vs. DP(ATLAS)-MP

11

The IRK method with the DP-MP iterative refinement method can per-
form about 8 to 27 times (with ATLAS) better than with the MP-MP iterative
refinement method.

Finally, we show the results of the accuracy versus computational time with
the higher order fully IRK method and the DP(ATLAS)-MP type iterative
refinement method in Figure 6. Consequently, the higher order IRK method
produce more efficiency and more precise numerical approximation by using the
DP-MP iterative refinement method.

1

10

100

1000

10000

100000

1.E-501.E-401.E-301.E-201.E-101.E+00

Comp.Time(sec)

Maximum Relative Error of Numerical Solution

Accuracy vs. Computational Time (50 decimal digits)

m=3

m=4

m=5

m=6

m=7

m=8

m=9

m=10

Figure 6: Accuracy vs. computational time of higher order implicit Runge-
Kutta method with DP(ATLAS)-MP(50 decimal digits) type iterative refine-
ment method

6 Conclusion and Future Works

The numerical experiments we mentioned above clarify that all types of mixed
precision iterative refinements can help us in obtaining approximations at the
same level of relative error as the L decimal digits direct method if the sufficient
conditions for convergence are satisfied. The experiments also showed that
well-tuned LAPACK like ATLAS enabled us to perform the DP-MP iterative
refinement method. The application to fully implicit Runge-Kutta methods may
provide us the desired efficiency by using the DP-MP type iterative refinement
method.

Our future works involve investigation of the mixed precision refinement
method’s applicability to more general class of initial value problems for ordi-
nary differential equations through various numerical experiments. In particu-
lar, the most important problems are time-dependent partial differential equa-
tions(PDE). In many cases, the discretization for these PDEs lead to ODEs with
sparse matrices, so iterative methods such as the Krylov subspace methods will
be more expected than direct methods, as we showed in this paper. Buttari
et.al have already proved that an SP-DP type iterative refinement method can
expand the performance of the Krylov subspace methods [3]. According to their
results, we can expect a better performance for the DP-MP and the MP-MP
iterative refinements applied to the Krylov subspace methods.

12

References

[1] Swox AB. The GNU Multiple Precision arithmetic library. http://gmplib.
org/.

[2] A.Buttari, J.Dogarra, Julie Langou, Julien Langou, P.Luszczek, and
J.Karzak. Mixed precision iterative refinement techniques for the solution of
dense linear system. The International Journal of High Performance Com-
puting Applications, Vol. 21, No. 4, pp. 457–466, 2007.

[3] A.Buttari, J.Dongarra, J.Kurzakand P.Luszczek, and S.Tomov. Using mixed
precision for sparse matrix computations to enhance the performance while
achieving 64-bit accuracy. ACM Trans. Math. Softw., Vol. 34, No. 4, pp.
1–22, 2008.

[4] S.P.Nørsett E.Hairer and G.Wanner. Solving Ordinary Differential Equa-
tions. Springer-Verlag, 1996.

[5] G.W.Stewart. Matrix Algorithms Volume I: Basic Decompositions. SIAM,
1998.

[6] Tomonori Kouya. BNCpack. http://na-inet.jp/na/bnc/.

[7] MPFR Project. The MPFR library. http://www.mpfr.org/.

[8] ATLAS: Automatically Tuned Linear Algebra Software. http://

math-atlas.sourceforge.net/.

Tomonori Kouya, Ph.D. is interested in multiple precision numerical computa-
tion and its application.
Postal Address: Department of Computer Science, Faculty of Comprehensive
Informatics, Shizuoka Institute of Science and Technology,
2200-2 Toyosawa, Fukuroi 437-8555 Japan
E-mail: tkouya@cs.sist.ac.jp
Web site: http://na-inet.jp/

13

