
Multiple precision× Guaranteed accuracy+ Regularizability× Integrability
Proceedings of Symposium on Celestial Mechanics and N-body Dynamics, 2009
Eds. M. Sekiguchi, M. Shibayama and M. Saito

Mixed Precision iterative refinement for Solving Linear Systems of
Equations using IEEE754 Double Precision arithemtic and Multiple
Precision arithmetic and its Applicaiton to Fully Implicit
Runge-Kutta Method

Tomonori Kouya⟨tkouya@cs.sist.ac.jp⟩
Shizuoka Institute of Science and Technology

Abstract. Buttari et al. have proposed the mixed precision iterative refinement us-
ing the IEEE754 single and double precision arithmetic for solving linear systems of
equations. We broaden the scope of applications of the mixed precision iterative re-
finement by using a combination of double precision arithmetic and multiple precision
arithmetic, and show that the new method has higher performance and yields more pre-
cise solutions than the original method. Finally, throught our numerical experiments,
we demonstrate that the fully implicit Runge-Kutta methods with the mixed precision
iterative refinement can speed up.

1. Introduction

In 1967, C. Moler proposed the original iterative refinement for solving linear systems of equa-
tions. His idea is based on Newton method to be applied to an-th dimensional equation such
as

f (x) = 0, f : Rn → Rn. (1)

In this case, the iteration formula is

xk+1 := xk −
[
∂f
∂x

(xk)

]−1

f (xk), (2)

where∂f (xk)/∂x is Jacobian matrix of given functionf .
If (1) is the linear system of equations such as

f (x) = Ax − b,

the correspondent Jacobian matrix is given as the constant matrixA. So the Newton iteration
changes the following algorithm:

r k := b − Axk (3)
SolveAzk = r k for zk (4)
xk+1 := xk + zk (5)

The above one is the algorithm of iterative refinement for solving linear systems of equations．
Althought these iterations are not theoritically necessary, actual finite precision floating-point
arithmetic generally create nonzero residualr k due to round-off errors occuring in these pro-
cesses. Therefore several iterations are executed to minimize the norms of residuals in many
cases. The residuals must be precise in order to obtain the high precision approximationsxk．

Buttari et al. shows that when the condition numberκ(A) = ∥A∥∥A−1∥of A is not so large
in comparison with the precision of employed floating-point arithmetic, sufficient condition

1

2

for convergence of mixed precision iterative refinement is satisfied even if the precision of (4)
is lower than the residuals. Their benchmarks clarify that their proposed one in which (4)
and (5) are calulated with IEEE754 double precision (simply double precision or DP) and the
linear system of equations at 2 with IEEE754 single precision (single precision or SP) can
perform better than pure double precision direct method．Their proposed one needs well-tuned
computation environment on which single precision computation is certainly faster than double
precision computation, such as Cell Broadband Engine or a combination of standard CPUs and
well-tuned LAPACK like ATLAS or GotoBLAS.

In this paper, we firstly explain the mixed precision iterative refinement methos proposed
by Butttari et al. and confirm that it can be applied with multiplre precision environment.
Secondly we will experiment original SP-DP (single precision - double precision), MP-MP
(multiple precisions) and DP-MP types iterative refinements applied to well- and ill-conditioned
problems on standard PC environment and demonstorate that our proposed DP-MP iterative
refinement can obtain the maximum speed-up ratio. Finally, we will benchmark fully implicit
Runge-Kutta methods with DP-MP iterative refinement to show its advantage.

2. Theory of Mixed Precision Iterative Refinement

We suppose that the targeted linear system of equations is

Ax = b

A ∈ Rn×n, x ∈ Rn, b ∈ Rn,
(6)

where the coefficient matrixA is always normal. In this paper, any elements ofA andb in (6)
are given in any expected precision.

Buttari et. al prove that mixed precision iterative refinement can obtain the approximation
at the same level of relative errors as by using standard methods for solving linear systems of
equations which purely usesL decimal digits floating-point arithmetic. Moreover their proposed
mixed precision iterative refinement can gain better performance if (4) is calulated withS(< L)
decimal digits. They also maintain that the algorithm employed in this part must be numerically
stable, concretely like GMRES method or direct method. We employ the direct method by LU
factorization with partial pivoting as solver for (4). In this case，(4) is expressed as

(PLU)zk = r k.

Before iterations,A must be factorized asPLU, whereP is a permutation matrix by partial
pivoting. Forward and backward substitutions are only executed in the process of iterations.

The algorithm corresponding to the formulas (3) - (5) is as follows:

1. A[L] := A, A[S] := A[L] , b[L] := b, b[S] := b[L]

2. A[S] := P[S]L[S]U [S]

3. Solve (P[S]L[S]U [S])x[S]
0 = b[S] for x[S]

0

4. x[L]
0 := x[S]

0

5. Fork = 0,1,2, ...

(a) r [L]
k := b[L] − Ax[L]

k

(b) r [S]
k := r [L]

k

(c) Solve (P[S]L[S]U [S])z[S]
k = r [S]

k for z[S]
k

(d) z[L]
k := z[S]

k

(e) x[L]
k+1 := x[L]

k + z[L]
k

3

(f) Exit if ∥r [L]
k ∥2 ≤

√
n εR ∥A∥F∥x[L]

k ∥2 + εA,

whereA[S] or b[L] means the approximated matrix or vector, respectively, rounded toS or L
decimal digits floating-point numbers.

We will describe the conditions for convergence of theS-L decimal digits mixed precision
iterative refinement below.

The symbolsεS andεL denote the machine epsilons inS andL decimal digits floating-
point arithmetic, respectively. InL digits arithmetic, (3) can be expressed as

r k = b − Axk + ek,

where ∥ek∥ ≤ φ1(n)εL (∥A∥ · ∥xk∥ + ∥b∥) .
(7)

The residualr k includes the computational errorek．Simirly we can express (5) as

xk = xk + zk + fk,

where∥fk∥ ≤ φ2(n)εL (∥xk∥ + ∥zk∥) .
(8)

Moreover (4) can be also expressed as

(A+ Hk)zk = r k,

where∥Hk∥ ≤ ϕ(n)εS∥A∥.
(9)

At this time, we denote thatαF , βF∈ R is as follows:

αF =
ϕ(n)κ(A)εS

1− ϕ(n)κ(A)εS
+ 2φ1(n)κ(A)εL + φ2(n)εL

+ 2(φ1(n)εL)φ2(n)κ(A)εL

= ψF(n)κ(A)εS (10)
βF = 4φ1(n)κ(A)εL + φ2(n)εL + 4(1+ φ1(n)εL)φ2(n)κ(A)εL

= ρF(n)κ(A)εL (11)

If the conditions
ρF(n)κ(A)εS

1− ψF(n)κ(A)εS
< 1 and αF < 1 (12)

are satisfied, we can expect that

lim
k→∞
∥x − xk∥ ≤

βF

1− αF
∥x∥. (13)

It means that the normwise relative error in the approximationxk can reduce the order ofβF/(1−
αF).

As these conditions mentioned above,S-L digits mixed precision iterative refinement can
converge if

κ(A)εS << 1 (14)

must be satisfied. According to the large condition numberκ(A), it needs to be larger computa-
tional digitsS enought to converge. On the other hand, is requires more computional cost and
its advantage would decrease. In addition, the question why we requireL > S digits approx-
imation would occure whenκ(A) is small. The cases thatS-L decimal digits mixed precision
iterative refinement will be advantageous are :

• to require overL digits approximation ifε−1
S > κ(A)

• to be in computational environment thatS digits arithmetic can be executed much faster
thanL digits arithmetic

and vise versa. Figure 1 explains such circumstances.

4

LU Decomposition

Computational Time

Forward &
Backward
Substitions

LU

Matrix-Vector
Multiplication

F&B
Subst

L digits
Direct

Method

S digits
Direct

Method

S-L Iterative
Refinement

LU
F&B
Subst

Matrix-Vector
Multiplication

F&B
Subst

Iteration

Figure 1. Structure of Computational Time of Mixed-precision iterative refinement

3. Iterative Refinements with Multiple Precision Floating-point Arithmetic

Multple precision floating-point arithmetic more than quadruple precision implemented as soft-
ware libraries generally needs much more computational cost than IEEE754 single or dou-
ble precision floating-point arithmetic embedded as hardware units on CPUs. For that reason,
mixed precision iterative refinement which usesS decimal digits andL decimal digits floating-
point arithmetic, can gain better performance than, and the approximation at the same level of
relative errors as by direct methods which purely usesL decimal digits floating-point arithmetic,
if users requireU decimal digits approximation more than quadruple precision andU is much
less than log10 κ(A), whereL > U + log10 κ(A) andS > log10 κ(A). So we select 3 combinations
of precision (SP-DP, DP-MPand MP-MP) to be applied in mixed precision iterative refinements,
which can optimize the level of relative errors and computational costs.

1. κ(A) < 107 =⇒ Single Precision(S = 7)-Double Precision(L = 15): SP-DP type

2. κ(A) < 1015 =⇒Double Precision(S = 15)-Quadruple Precison or Mutiple Precision(L >
30): DP-MP type

3. κ(A) > 1015 =⇒Quadruple Precision or Multiple Precision - Multiple Precision : MP-MP
type

DP-MP and MP-MP iterative refinements in above combinations can gain better perfor-
mance than original SP-DP type one proposed by Buttari et al. We can expect that DP-MP
iterative refinement will gain the best performance in them, because it uses high-speed hard-
ware computation (DP) and slow software computation (MP).

But actual performances of these mixed precision iterative refinements depend on the com-
putation enviroments on which they are executed. As Figure 1 maintains,S-L decimal digits
iterative refinement would be meaningless ifS decimal digits computation could not be exe-
cuted faster thanL decimal digits one. For that reason, we setS and L as L/S ≥ 2 in our
numerical experiments described in this paper. It is one of future works to minimize the ratio
L/S enought to gain better performed mixed precision iterative refinement.

4. Performance Evaluation

In this section, we evaluate performances of SP-DP, MP-MP, DP-MP iterative refinements on
the following environment:

CPU Intel Core2Quad 6600+

RAM 4GB

5

OS CentOS 5.2 x8664

C compiler GCC 4.1.2(gcc, gfortranを使用)

Multiple Precision Library MPFR 2.3.2/GMP 4.2.1+ BNCpack 0.7b

Linear Alegebra Computation Library LAPACK 3.2, ATLAS 3.8.3

SP, DP computations are executed by using BNCpack without taking advantages of CPU
architectures, original LAPACK (compiled with gfortran), its tuned ATLAS and GotoBLAS．
Core2quad has 4 cores, but we did not use any parallelization.

MP computations are executed by using BNCpack based on MPFR/GMP. Muliple preci-
sion floating-point variables provided by MPFR and GMP are able to have any length of bits of
mantissas, so mixed precision computations are freely executed in any positions of codes.

We set the convergence check such as

εR := εL, εA := 0, (15)

in order to obtain the best approximation as far as we use less thanL decimal digits computation,
whereεL is the machine epsilon inL decimal digits computation.

4.1. Performance Evaluation of SP-DP Iterative Refinement

To prepare test problems for numerical experiments, we create the dense square matrix with
fixed condition number by multiplying normal matrixX generated by using standard random
generator, its inverse matrixX−1 and the diagonal matrixD = diag(n, n− 1, ..., 1) such as:

A = XDX−1. (16)

So we can obtain well- or ill-condition matrixA with κ2(A) = n. We employ a true solution as
x = [1 2 ... n]T and create test problems with correctly roundedL decimal digitsA andb = Ax.
Due to limitation of main memory, the maximum dimensionn is 4096. In all cases we create,
SP-DP iterative refinement can be converged after 2 or 3 iterations.

First, we show the wall-clock times to execute IEEE754 double precison direct methods
(partial pivoting LU decomposion, forward and backward substitutions) and speed-up ratio of
single precision direct methods (= wall-clock time of DP direct method/ wall-clock time of SP
direct method) in Figure 2.

-500-450-400-350-300-250-200-150-100-500 64 128

log10(R
elErr)

DimensionL=500

-1000-900-800-700-600-500-400-300-200-1000 64 128 256 512

log10(R
elErr)

DimensionL=1000

-2000-1800-1600-1400-1200-1000-800-600-400-2000 64 128 256 512

log10(R
elErr)

DimensionL=2000

Iter.Ref.LU_P(L)
Figure 2. Computational Time (sec) of Double-precision Direct Method(left) and
Speedup Ratio of Single-precision Direct Method(right)

In DP computation libraries, the performance of BNCpack is worst and others are at the
same level of performance with growing dimensions. GotoBLAS can especially obtain the best

6

performance in small dimensions and the largest speed-up ratio of SP direct method. These
benchmarks show that the SP-DP iterative refinement using GotoBLAS can obtain the best
performance on our PC environment.

Next, we show speed-up ratios of SP-DP iterative refinement (= wall-clock time of DP
direct method/ wall-clock time of SP-DP iterative refinement) and maximum elementwise
relative errors of approximations obtained by direct and iterative refinements in Figure 3.

0.60.70.80.911.11.21.31.41.5

512 1024 2048 4096Speedup
Ratio (LU
_P(DP) / I
ter.Ref.)

Dimension

BNCpackLAPACKATLASGotoBLAS
-16-14-12-10-8-6

-4-20
512 1024 2048 4096

log10(Re
lErr)

Dimension Iter.Ref BNCpackIter.Ref LAPACKIter.Ref ATLASIter.Ref GotoBLASLU_P(DP) BNCpackLU_P(DP) LAPACKLU_P(DP) ATLASLU_P(DP) GotoBLAS
Figure 3. Relative Error of Double-precision Direct Method and SP-DP iterative
refinement (left) and Speedup Ratio of SP-DP iterative refinement (right)

We can recognize that relative errors of SP-DP iterative refinements are totally 2 or 3 dec-
imal digits larger than DP direct method, but we cannot maintain that such tendency toward
relative error is definite, because the approximation obtained by iterative refinement with Goto-
BLAS can obtain the best accuracy for 4096 dimentional problem. We also can recognize that
the accuracies of approximations obtained by both methods are closer with growing dimensions
of problems.

These benchmarks such as Figure 2 attest to well-tuned high performance linear compu-
tation libraries able to execute faster SP computation than DP computaion for SP-DP iterative
refinement. GotoBLAS produce the largest speed-up ratio as we expected, but LAPACK or
ATLAS may be worse.

4.2. Performance Evaluation of MP-MP Iterative Refinement

We evaluate the performance of MP-MP iterative refinement by using the well-conditioned
problem (16). Due to limitation of our main memory, we set the dimentions asn = 128,256,512
and 1024, computaional digits asL = 50,100 and 200.S is fixed asL/2. For comparison, the
wall-clock times of purelyL digits direct methods are shown in Table 1.

Table 1. Computational Time of Multiple-precision Direct Method (sec)
n L = 50 100 200
128 0.15 0.24 0.46
256 1.81 1.97 5.66
512 13.83 23.59 44.7

1024 93.90 160.51 264.94

Figure 4 shows the relative errors and the speedup-ratio ofL digits direct methods and
MP-MP type (L/2-L) iterative refinements.

In similar case of SP-DP type, the approximations obtained by MP-MP iterative refinement
can be 2 or 3 decimal digits worse than MP direct method. The speedup ratio can be about 1
to 2 times larger. For the test problems, we can perform better if we select much lessS. These
results suspect that we can obtain the best performance with DP-MP iterative refinement.

7

-250-200-150-100-500

L=50 L=100 L=200 L=50 L=100 L=200Iter.Ref LU_P(L)
log10(Re
lErr) n=1282565121024 11.21.41.61.82

2.2

128 256 512 1024Speedup
Ratio(LU_
P(L) / Iter
.Ref.)

Dimension

L=50L=100L=200

Figure 4. Relative Error of Multiple-precision Direct Method and MP-MP iterative
refinement (left) and Speedup Ratio of MP-MP iterative refinement (right)

Next we use Lotkin matrix (17) as a example of ill-conditioned problems.
1 1 · · · 1

1/2 1/3 · · · 1/(n+ 1)
...

...
...

1/n 1/(n+ 1) · · · 1/(2n− 1)

 (17)

All elements in the first row are replaced to 1 on Hilbert matrix which is well-known as
ill-condtionded. The condition number is the same order as Hilbert matrix. If the order of the
condition numbers is larger than the number of decimal digits,A[L] rounded inL decimal digits
have the smaller condition numbers than true one (Table 2)．In this cases, this is the 512th
dimensional Lotkin matrix rounded in 500 decimal digits.

Table 2. Condition Numbers
of Lotkin Matrices

log10(κ1(A[L]))
n L = 500 1000 2000
64 96.0 96.0 96.0
128 193.9 193.9 193.9
256 389.8 389.8 389.8
512 506.0 781.6 781.6

Table 3. Computational Time
of Multiple-precision Direct
Method (sec): L = 500,1000
and 2000

Comp.Time (sec)
n L = 500 1000 2000
64 0.19 0.57 2.19
128 1.51 4.50 17.47
256 12.15 35.96 139.51
512 97.00 286.76 1115.88

For that reasons, MP-MP iterative refinement in 500 decimal digits computaion can con-
verge under 128th dimentional problems, under 256th dimesional ones in 1000 decimal digits
computaion, and under 512th dimensional ones in 2000 decimal digits computation. As shown
in Figure 5, the relative errors of approximations is at the same level asL decimal digits direct
method if converged. In case of 1000 decimal digits and 512th dimensional problem, direct
method can obtain 200 decimal digits approximation but MP-MP iterative refinement cannot
converge due to lack of accuracy about 800 decimal digits (S = 500)．If it can converge, more
decimal digits can speed up MP-MP iterative refinement though the number of iterations need
more additional 3 to 6 iterations. In similar case of for well-conditioned problems，more deci-
mal digits MP-MP iterative refinement can perform about 1.5 to 3.4 times much better MP than
direct method as shown in Figure 6).

8

-500-450-400-350-300-250-200-150-100-500 64 128

log10(R
elErr)

DimensionL=500

-1000-900-800-700-600-500-400-300-200-1000 64 128 256 512

log10(R
elErr)

DimensionL=1000

-2000-1800-1600-1400-1200-1000-800-600-400-2000 64 128 256 512

log10(R
elErr)

DimensionL=2000

Iter.Ref.LU_P(L)
Figure 5. Relative Error of Multiple-precision Direct Method and MP-MP iterative
refinement for Lotkin Matrix:L = 500(left),L = 1000 (Middle) andL = 200 (right)

1
1.5

2
2.5

3
3.5

64 128 256 512Speed
up Ra
tio(LU
_P(L)
/ Iter.
Ref.)

Dimension

L = 500L = 1000L = 2000

Figure 6. Speedup Ratio of MP-MP iterative refinement: Lotkin Matrix

9

4.3. Performance Evaluation of DP-MP Iterative Refinement

We here evaluate DP-MP iterative refinement by using well-conditions linear system of equa-
tions (16). In this algorithm, LU factorization outside iterations and forward and backward
substitutions inside them are executed in DP arithmetic. On the other hand, the residuals and
renewal of approximations inside them are done in MP arithmetic. A combination cause limi-
tation of accurary for approximation due to occuring underflow in DP arithmetic. If the length
of exponent in MP floatint-point number is longer than DP’s one, the renewal of approximation
cannot be invalid when the norm of residual is under about 1.0×10−308. For that reason, we limit
the computational digits toL = 50,100 and 200 and the dimension of test problemsn = 128 to
1024. The results are described as below.

Table 4 show the relarive erros and iterative times of DP-MP iterative refinement. For
comparison, the results of MP-MP iterative refinements are shown in it.

Table 4. log10(Relative Error) and Iterative Times (in Parethesis) of DP-MP itera-
tive refinement

L = 50
n MP-MP BNCpack LAPACK ATLAS GotoBLAS

128 -47.63 (2) -49.10 (4) -49.02 (4) -49.23 (4) -49.21 (4)
256 -46.71 (2) -48.84 (4) -48.80 (4) -48.74 (4) -49.12 (4)
512 -47.24 (2) -48.09 (4) -48.41 (4) -48.76 (4) -48.79 (4)
1024 -46.96 (2) -48.75 (4) -48.61 (4) -48.32 (4) -48.36 (4)

n L = 100
128 -97.38 (2) -98.94 (7) -98.69 (7) -98.93 (7) -98.86 (7)
256 -96.93 (2) -99.04 (7) -98.96 (7) -99.04 (7) -98.94 (7)
512 -96.18 (2) -98.00 (7) -98.43 (7) -98.62 (7) -98.60 (7)
1024 -95.56 (2) -98.66 (7) -98.71 (7) -98.60 (7) -98.64 (7)

n L = 200
128 -197.39 (2) -198.50 (14) -198.59 (14) -196.97 (13) -198.64 (13)
256 -196.38 (2) -198.65 (14) -198.68 (14) -198.71 (14) -198.38 (13)
512 -196.13 (2) -198.20 (14) -198.04 (14) -198.42 (14) -198.56 (13)
1024 -196.11 (2) -198.46 (14) -198.52 (14) -198.56 (14) -195.25 (13)

There is very little difference between the relative errors of approximation of DP-MP iter-
ative refinement and MP-MP type one. In many cases, DP-MP type can obtain a little bit more
precise than MP-MP type. When the ratioL/S is larger, the speed of convergence of iterative
refinement is slower. For that reason, DP-MP type requres more than 2 to 7 times iterations
than MP-MP type. Figure 7 shows the speedup ratio versus MP-MP type.

Totally we can recognize that more computational digits tend to reduce the speedup ratio.
This is because MP computations of residuals in more iterations reduce the speedup gained by
LU factorization as Table 4 shows. Even though there are such disadvantages, actual DP-MP
iterative refinement can perform 10 (in 50 decimal digits) to 30 (in 200 decimal digits) times
better with GotoBLAS, 1.8 to 4 times better with BNCpack.

5. Application to Fully Implicit Runge-Kutta Methods with DP-MP Iterative Refinement

As mentioned above, the DP-MP type mixed precition iterative refinement can perform better
to relatively well-contioned linear systems of equations from which DP direct method can ob-
tain precise solutions. The advantage will be maximazed for fully implicit Runge-Kutta (IRK)
methods.

For the initial value problem forn-th dimensional ordinary differential equation (ODE){
dy
dx = f (x, y)

y(x0) = y0
, (18)

10

0

5

10

15

20

25

30

35

B
N
C
p
a
c
k

L
A
P
A
C
K

A
T
L
A
S

G
o
t
o
B
L
A
S

B
N
C
p
a
c
k

L
A
P
A
C
K

A
T
L
A
S

G
o
t
o
B
L
A
S

B
N
C
p
a
c
k

L
A
P
A
C
K

A
T
L
A
S

G
o
t
o
B
L
A
S

L=50 L=100 L=200

Ite
r.R

ef(
L/

2-L
) /

 Ite
r.R

ef.
(15

-L)
128

256

512

1024

Figure 7. Speedup ratio: MP-MP/ DP-MP

we discretize it over integration interval [x0, α] with constant stepsizeh = (α − x0)/(2 · 4l).
When we obtain new approximationyi+1 ≈ y(x0 + ih) from the former oneyi , we must solve
the nonlinear system of equations

k1 = f (xi + c1h, yi + h
∑m

j=1 a1 jk j)
k2 = f (xi + c2h, yi + h

∑m
j=1 a2 jk j)

...
km = f (xi + cmh, yi + h

∑m
j=1 am jk j)

,

and then we calculateyi+1 as follows:

yi+1 := yi + h
m∑
j=1

w jk j ,

wherem means a number of stages of IRK method, andcp, apq andwq are contants chosen in
IRK method. In our numerical experiments, we select 3 stages 6th order Gauss type formula.

To solve the nonlinear system of equations above, Newton’s iteration is often applied as
follows:

k(l+1)
1

k(l+1)
2
...

k(l+1)
m

 :=


k(l)

1
k(l)

2
...

k(l)
m

 − J−1(k(l)
1 , ..., k

(l)
m)


k(l)

1 − f (xi + c1h, yi + h
∑m

j=1 a1 jk
(l)
j)

k(l)
2 − f (xi + c2h, yi + h

∑m
j=1 a2 jk

(l)
j)

...

k(l)
m − f (xi + cmh, yi + h

∑m
j=1 am jk

(l)
j)

 ,
whereJ(k(l)

1 , k
(l)
2 , ..., k

(l)
m) means

J(k(l
1 , k

(l)
2 , ..., k

(l)
m) =


In − J11 −J12 · · · −J1m

−J21 In − J22 · · · −J2m
...

...
...

−Jm1 −Jm2 · · · In − Jmm

 . (19)

In above formulas,In meansn-th dimesional identity matrix，Jpq means

Jpq = hapq
∂

∂y
f (xi + cph, yi + h

m∑
j=1

ap jk
(l)
j) ∈ Rn×n,

11

where∂f/∂y is the Jacobian matrix off .
We can expect that the linear system of equations emerged from Newton’s iteration, have

the property thatJ(k(l
1 , k

(l)
2 , ..., k

(l)
m) → Imn in case ofh → 0. Due to that property, DP-MP

iterative refinement may be applicable to them for IRK method with smallh, because they
would be well-conditioned in many cases. In such situations, DP-MP iterative refinement may
speed up IRK method for requiring MP approximation.

To confirm the hypothesis, we prepare the constant linear ODE

f (x, y) = −Ay, y(0) = [1 ... 1]T ,

with the well-conditioned 128th dimentional matrixA(∥A∥1 ≈ 103) based on 16), and then apply
the 3 stages, 6th order Gauss typeL = 50 decimal digits IRK method to it. Figure 8 shows the
history of relative errors in the approximations vs stepsizeh, and the histories of condition
numbers and Frobenius norms ofJ(k(l)

1 , k
(l)
2 , ..., k

(l)
m).

1E-241E-211E-181E-151E-121E-091E-060.0011
2 8 32 128 512h^(-1)

RelErrO(h^6)
1

10
100

1000
10000

2 8 32 128 512h^(-1)

||J||_F cond_1(J)

Figure 8. History of Maximum Relative Errors (Left), Frobenius Norms and Con-
dition Numbers ofJ (Right)

In case ofh = 512, we can recognize that about 24 decimal digits approximations are
obtained and that the condition numers decrease in 3.8 × 103 to 1.7. These facts verify the
applicability of DP-MP iterative refinements to the linear ODE. We show the speedup ratio of
IRK method with DP-MP iterative refinement versus with direct method in Figure 9.

IRK method with DP-MP iterative refinement can perform about 7.5 to 8.9 times (with
GotoBLAS) better than with direct method. In case of with BNCpack, it can do about 3.8 to 4.8
times better.

6. Conclusion and Future Works

Numerical experiments we mentioned above clarify that all types of mixed precision iterative
refinements can bring us the approximation at the same level of relative error asL decimal
digits direct method if the sufficient conditions for convergence are satisfied, that well-tuned
LAPACK like GotoBLAS or ATLAS enable us to perform DP-MP iterative refinement as well
as SP-DP type one in comparison with direct method, and that the application to fully implicit
Runge-Kutta methods may provide us the efficiency.

Our future works are to investigate mixed precision refinement method’s applicability to
more general class of initial value problems for ordinary differential equations through various
numerical experiments. Especially the most important problems are time-dependent partial
differential equations. In many cases, the discretization for these PDEs lead to ODEs with

12

IEEE754 double - MP(L=50)

0

1

2

3

4

5

6

7

8

9

10

mpf_irk36 mpf_irk36 mpf_irk36 mpf_irk36 mpf_irk36

h=1/2 h=1/8 h=1/32 h=1/128 h=1/512

IRK
 /

IRK
+It

er
.Re

f.

BNCpack IRK/IRK+Iter.Ref. GotoBLAS IRK/IRK+Iter.Ref.

Figure 9. Speedup ratio of Imlicit Runge-Kutta Method (50 Decimal Precision):
DP-MP vs Direct Method

sparse matrices, so iterative methods such as Krylov subspace methods will be more expected
than direct methods as we experimented in this paper. Buttari et. al have already proved that SP-
DP type iterarive refinement method can expand the performance of Krylov subspace methods.
According to their results, we can expect more highly performance for DP-MP and MP-MP
iterative refinements applied to Krylov subspace methods.

References

Swox AB. GNU MP.http://gmplib.org/.

A.Buttari, J.Dogarra, Julie Langou, Julien Langou, P.Luszczek, and J.Karzak. Mixed precision
iterative refinement techniques for the solution of dense linear system.The International
Journal of High Performance Computing Applications, Vol. 21, No. 4, pp. 457–466,
2007.

A.Buttari, J.Dongarra, J.Kurzakand P.Luszczek, and S.Tomov. Using mixed precision for sparse
matrix computations to enhance the performance while achieving 64-bit accuracy.ACM
Trans. Math. Softw., Vol. 34, No. 4, pp. 1–22, 2008.

S.P.Nørsett E.Hairer and G.Wanner.Solving Ordinary Differential Equations. Springer-Verlarg,
1996.

G.W.Stewart.Matrix Algorithms Volume I: Basic Decompositions. SIAM, 1998.

Tomonori Kouya. BNCpack.http://na-inet.jp/na/bnc/.

LAPACK. http://www.netlib.org/lapack/.

MPFR Project. The MPFR library.http://www.mpfr.org/.

ATLAS: Automatically Tuned Linear Algebra Software. http://math-atlas.
sourceforge.net/.

